Skip to content

Categories

On this page

Unsupervised Machine Learning

Unsupervised Machine Learning

  • No labeling task

Tasks

  • dimensionality reduction, reducing the number of input features in a dataset
  • anomaly detection, detecting instances that are very different from the norm, also used for data cleaning
  • clustering, grouping similar instances into clusters
  • density estimation, estimating the density of the distribution (PDF) of data points
  • association rule learning, to detect unobvious relationships between variables in a dataset

Algorithm

  • Dimensionality reduction
    • Principle Component Analysis: Incremental PCA, Randomized PCA, Kernel PCA
    • Manifold Learning - LLE, Isomap, t-SNE
    • Autoencoders: Denoising AE, Variational AE, Convolutional AE, Recurrent AE
  • Anomaly Detection
    • Isolation Forest
    • One class SVM
    • Local Outlier Factor
    • Minimum Covariance Determinant
  • Clustering
    • K-means clustering
    • KNN (k-nearest neighbors)
    • Hierarchal clustering and Spectral Clustering
    • Affinity Propagation
    • Mean Shift and BIRCH
    • Gaussian Mixture Models
    • DBSCAN
    • Mean shift
    • BIRCH
  • Density estimation
    • DBSCAN
    • Mean shift
  • Association rule learning
    • Apriori
    • Eclat
    • FP-Growth

References

Edit this page
Last updated on 3/7/2023