Torch-Tensor-Format
Torch Tensor Format
Converting from CSV #1
To convert your time-series training and testing data from CSV files into a format similar to PyTorch's MNIST dataset, you can follow these steps:
- Read the CSV files to load the data and labels.
- Convert the data and labels into PyTorch tensors.
- Create a custom dataset class using PyTorch's
torch.utils.data.Dataset
class. - Use the
torch.utils.data.DataLoader
to create data loaders for training and testing.
Here's a step-by-step guide with code examples:
Assuming you have CSV files named train_data.csv
, train_labels.csv
, test_data.csv
, and test_labels.csv
, where each row corresponds to a time-series data sample and its corresponding label.
import torchimport pandas as pdfrom torch.utils.data import Dataset, DataLoader# Step 1: Load the CSV filestrain_data = pd.read_csv('train_data.csv')train_labels = pd.read_csv('train_labels.csv')test_data = pd.read_csv('test_data.csv')test_labels = pd.read_csv('test_labels.csv')# Step 2: Convert data and labels to PyTorch tensorstrain_data = torch.tensor(train_data.values, dtype=torch.float32)train_labels = torch.tensor(train_labels.values, dtype=torch.long)test_data = torch.tensor(test_data.values, dtype=torch.float32)test_labels = torch.tensor(test_labels.values, dtype=torch.long)# Step 3: Create a custom dataset classclass TimeSeriesDataset(Dataset):def __init__(self, data, labels):self.data = dataself.labels = labelsdef __len__(self):return len(self.data)def __getitem__(self, idx):sample = {'data': self.data[idx], 'label': self.labels[idx]}return sample# Step 4: Create data loadersbatch_size = 64train_dataset = TimeSeriesDataset(train_data, train_labels)train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)test_dataset = TimeSeriesDataset(test_data, test_labels)test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
Now you have train_loader
and test_loader
data loaders that you can use for training and testing your time-series data with PyTorch. Each iteration of the data loader will provide a batch of time-series samples and their corresponding labels in the PyTorch format, similar to how the MNIST dataset is typically used. You can replace the data loading and CSV file paths with your actual data files and labels.
Converting from CSV #2
To convert the CSV files into a format similar to the Pytorch format of MNIST data, you'll need to follow a series of steps. The PyTorch MNIST dataset is a torchvision.datasets.MNIST
object, which is a subclass of torch.utils.data.Dataset
. This class is designed to allow easy access to datasets in a format that PyTorch can use.
Here's a step-by-step guide:
- Read the CSV file
First, you need to read the CSV files. You can use the pandas
library's read_csv
function for this. This function will return a DataFrame object.
import pandas as pdtrain_df = pd.read_csv('train.csv')test_df = pd.read_csv('test.csv')
- Convert DataFrames to PyTorch Tensors
Once you have the data in DataFrame format, you'll need to convert it to PyTorch tensors. This can be done using the torch.tensor
function. Remember to convert the data to float for the inputs (time-series data) and to long for the labels.
import torchtrain_data = torch.tensor(train_df.iloc[:, :-1].values).float()train_labels = torch.tensor(train_df.iloc[:, -1].values).long()test_data = torch.tensor(test_df.iloc[:, :-1].values).float()test_labels = torch.tensor(test_df.iloc[:, -1].values).long()
- Create a Dataset
Next, you need to create a custom Dataset class. This class should inherit from torch.utils.data.Dataset
and override the __len__
and __getitem__
methods.
from torch.utils.data import Datasetclass TimeSeriesDataset(Dataset):def __init__(self, data, labels):self.data = dataself.labels = labelsdef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx], self.labels[idx]
- Create Data Loaders
Finally, you can create your DataLoader objects. These will allow you to iterate over your dataset in batches.
from torch.utils.data import DataLoadertrain_dataset = TimeSeriesDataset(train_data, train_labels)test_dataset = TimeSeriesDataset(test_data, test_labels)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
Now, you can use train_loader
and test_loader
in the same way as you would use the MNIST data loaders in PyTorch.
Converting #4
import pandas as pdfrom torchvision import datasetsimport torch# Load training datatrain_df = pd.read_csv('train_data.csv')train_labels = pd.read_csv('train_labels.csv')# Load test datatest_df = pd.read_csv('test_data.csv')test_labels = pd.read_csv('test_labels.csv')# Convert to Tensor datasetstrain_data = torch.Tensor(train_df.values)train_labels = torch.LongTensor(train_labels.values)test_data = torch.Tensor(test_df.values)test_labels = torch.LongTensor(test_labels.values)# Create PyTorch dataset objectstrain_dataset = datasets.TensorDataset(train_data, train_labels)test_dataset = datasets.TensorDataset(test_data, test_labels)# Access with indicessample = train_dataset[0]print(sample[0], sample[1])